786 research outputs found

    Efficient data structures for masks on 2D grids

    Full text link
    This article discusses various methods of representing and manipulating arbitrary coverage information in two dimensions, with a focus on space- and time-efficiency when processing such coverages, storing them on disk, and transmitting them between computers. While these considerations were originally motivated by the specific tasks of representing sky coverage and cross-matching catalogues of astronomical surveys, they can be profitably applied in many other situations as well.Comment: accepted by A&

    ArtDeco: A beam deconvolution code for absolute CMB measurements

    Full text link
    We present a method for beam deconvolution for cosmic microwave background (CMB) anisotropy measurements. The code takes as input the time-ordered data, along with the corresponding detector pointings and known beam shapes, and produces as output the harmonic a_Tlm, a_Elm, and a_Blm coefficients of the observed sky. From these one can further construct temperature and Q and U polarisation maps. The method is applicable to absolute CMB measurements with wide sky coverage, and is independent of the scanning strategy. We test the code with extensive simulations, mimicking the resolution and data volume of Planck 30GHz and 70GHz channels, but with exaggerated beam asymmetry. We apply it to multipoles up to l=1700 and examine the results in both pixel space and harmonic space. We also test the method also in presence of white noise.Comment: 15 page

    Libsharp - spherical harmonic transforms revisited

    Full text link
    We present libsharp, a code library for spherical harmonic transforms (SHTs), which evolved from the libpsht library, addressing several of its shortcomings, such as adding MPI support for distributed memory systems and SHTs of fields with arbitrary spin, but also supporting new developments in CPU instruction sets like the Advanced Vector Extensions (AVX) or fused multiply-accumulate (FMA) instructions. The library is implemented in portable C99 and provides an interface that can be easily accessed from other programming languages such as C++, Fortran, Python etc. Generally, libsharp's performance is at least on par with that of its predecessor; however, significant improvements were made to the algorithms for scalar SHTs, which are roughly twice as fast when using the same CPU capabilities. The library is available at http://sourceforge.net/projects/libsharp/ under the terms of the GNU General Public License

    Cosmology inference at the field level from biased tracers in redshift-space

    Full text link
    Cosmology inference of galaxy clustering at the field level with the EFT likelihood in principle allows for extracting all non-Gaussian information from quasi-linear scales, while robustly marginalizing over any astrophysical uncertainties. A pipeline in this spirit is implemented in the \texttt{LEFTfield} code, which we extend in this work to describe the clustering of galaxies in redshift space. Our main additions are: the computation of the velocity field in the LPT gravity model, the fully nonlinear displacement of the evolved, biased density field to redshift space, and a systematic expansion of velocity bias. We test the resulting analysis pipeline by applying it to synthetic data sets with a known ground truth at increasing complexity: mock data generated from the perturbative forward model itself, sub-sampled matter particles, and dark matter halos in N-body simulations. By fixing the initial-time density contrast to the ground truth, while varying the growth rate ff, bias coefficients and noise amplitudes, we perform a stringent set of checks. These show that indeed a systematic higher-order expansion of the velocity bias is required to infer a growth rate consistent with the ground truth within errors. Applied to dark matter halos, our analysis yields unbiased constraints on ff at the level of a few percent for a variety of halo masses at redshifts z=0,0.5,1z=0,\,0.5,\,1 and for a broad range of cutoff scales 0.08h/MpcΛ0.20h/Mpc0.08\,h/\mathrm{Mpc} \leq \Lambda \leq 0.20\,h/\mathrm{Mpc}. Importantly, deviations between true and inferred growth rate exhibit the scaling with halo mass, redshift and cutoff that one expects based on the EFT of Large Scale Structure. Further, we obtain a robust detection of velocity bias through its effect on the redshift-space density field and are able to disentangle it from higher-derivative bias contributions

    Improved cosmic microwave background (de-)lensing using general spherical harmonic transforms

    Full text link
    Deep cosmic microwave background polarization experiments allow a very precise internal reconstruction of the gravitational lensing signal in pricinple. For this aim, likelihood-based or Bayesian methods are typically necessary, where very large numbers of lensing and delensing remappings on the sphere are sometimes required before satisfactory convergence. We discuss here an optimized piece of numerical code in some detail that is able to efficiently perform both the lensing operation and its adjoint (closely related to delensing) to arbitrary accuracy, using nonuniform fast Fourier transform technology. Where applicable, we find that the code outperforms current widespread software by a very wide margin. It is able to produce high-resolution maps that are accurate enough for next-generation cosmic microwave background experiments on the timescale of seconds on a modern laptop. The adjoint operation performs similarly well and removes the need for the computation of inverse deflection fields. This publicly available code enables de facto efficient spherical harmonic transforms on completely arbitrary grids, and it might be applied in other areas as well.Comment: 8 pages, 3 figures, final A&

    Denoising, deconvolving and decomposing multi-domain photon observations- The D4PO algorithm

    Full text link
    Astronomical imaging based on photon count data is a non-trivial task. In this context we show how to denoise, deconvolve, and decompose multi-domain photon observations. The primary objective is to incorporate accurate and well motivated likelihood and prior models in order to give reliable estimates about morphologically different but superimposed photon flux components present in the data set. Thereby we denoise and deconvolve photon counts, while simultaneously decomposing them into diffuse, point-like and uninteresting background radiation fluxes. The decomposition is based on a probabilistic hierarchical Bayesian parameter model within the framework of information field theory (IFT). In contrast to its predecessor D3^3PO, D4^4PO reconstructs multi-domain components. Thereby each component is defined over its own direct product of multiple independent domains, for example location and energy. D4^4PO has the capability to reconstruct correlation structures over each of the sub-domains of a component separately. Thereby the inferred correlations implicitly define the morphologically different source components, except for the spatial correlations of the point-like flux. Point-like source fluxes are spatially uncorrelated by definition. The capabilities of the algorithm are demonstrated by means of a synthetic, but realistic, mock data set, providing spectral and spatial information about each detected photon. D4^4PO successfully denoised, deconvolved, and decomposed a photon count image into diffuse, point-like and background flux, each being functions of location as well as energy. Moreover, uncertainty estimates of the reconstructed fields as well as of their correlation structure are provided employing their posterior density function and accounting for the manifolds the domains reside on

    Efficient wide-field radio interferometry response

    Full text link
    Radio interferometers do not measure the sky brightness distribution directly but rather a modified Fourier transform of it. Imaging algorithms, thus, need a computational representation of the linear measurement operator and its adjoint, irrespective of the specific chosen imaging algorithm. In this paper, we present a C++ implementation of the radio interferometric measurement operator for wide-field measurements which is based on "improved ww-stacking". It can provide high accuracy (down to 1012\approx 10^{-12}), is based on a new gridding kernel which allows smaller kernel support for given accuracy, dynamically chooses kernel, kernel support and oversampling factor for maximum performance, uses piece-wise polynomial approximation for cheap evaluations of the gridding kernel, treats the visibilities in cache-friendly order, uses explicit vectorisation if available and comes with a parallelisation scheme which scales well also in the adjoint direction (which is a problem for many previous implementations). The implementation has a small memory footprint in the sense that temporary internal data structures are much smaller than the respective input and output data, allowing in-memory processing of data sets which needed to be read from disk or distributed across several compute nodes before.Comment: 13 pages, 8 figure

    Consistency tests of field level inference with the EFT likelihood

    Full text link
    Analyzing the clustering of galaxies at the field level in principle promises access to all the cosmological information available. Given this incentive, in this paper we investigate the performance of field-based forward modeling approach to galaxy clustering using the effective field theory (EFT) framework of large-scale structure (LSS). We do so by applying this formalism to a set of consistency and convergence tests on synthetic datasets. We explore the high-dimensional joint posterior of LSS initial conditions by combining Hamiltonian Monte Carlo sampling for the field of initial conditions, and slice sampling for cosmology and model parameters. We adopt the Lagrangian perturbation theory forward model from [1], up to second order, for the forward model of biased tracers. We specifically include model mis-specifications in our synthetic datasets within the EFT framework. We achieve this by generating synthetic data at a higher cutoff scale Λ0\Lambda_0, which controls which Fourier modes enter the EFT likelihood evaluation, than the cutoff Λ\Lambda used in the inference. In the presence of model mis-specifications, we find that the EFT framework still allows for robust, unbiased joint inference of a) cosmological parameters - specifically, the scaling amplitude of the initial conditions - b) the initial conditions themselves, and c) the bias and noise parameters. In addition, we show that in the purely linear case, where the posterior is analytically tractable, our samplers fully explore the posterior surface. We also demonstrate convergence in the cases of nonlinear forward models. Our findings serve as a confirmation of the EFT field-based forward model framework developed in [2-7], and as another step towards field-level cosmological analyses of real galaxy surveys.Comment: 31 + 13 pages, 15 figures; Added 3 new figures, text cleanup and fix typos; matching the version to be published in JCA

    Acute symptomatic seizures in the emergency room: predictors and characteristics

    Get PDF
    Background: When treating patients with epileptic seizures in the emergency room (ER), it is of paramount importance to rapidly assess whether the seizure was acute symptomatic or unprovoked as the former points to a potentially life-threatening underlying condition. In this study, we seek to identify predictors and analyze characteristics of acute symptomatic seizures (ASS). Methods: Data from patients presenting with seizures to highly frequented ERs of two sites of a university hospital were analyzed retrospectively. Seizures were classified as acute symptomatic or unprovoked according to definitions of the International League Against Epilepsy. Univariate and multivariate analysis were conducted to identify predictors; furthermore, characteristics of ASS were assessed. Results: Finally, 695 patients were included, 24.5% presented with ASS. Variables independently associated with ASS comprised male sex (OR 3.173, 95% CI 1.972-5.104), no prior diagnosis of epilepsy (OR 11.235, 95% CI 7.195-17.537), and bilateral/generalized tonic-clonic seizure semiology (OR 2.982, 95% CI 1.172-7.588). Alcohol withdrawal was the most common cause of ASS (74.1%), with hemorrhagic stroke being the second most prevalent etiology. Neuroimaging was performed more often in patients with the final diagnosis of ASS than in those with unprovoked seizures (82.9% vs. 67.2%, p < 0.001). Patients with ASS were more likely to receive acute antiseizure medication in the ER (55.9% vs. 30.3%, p < 0.001). Conclusions: In one quarter of patients presenting to the ER after an epileptic fit, the seizure had an acute symptomatic genesis. The independently associated variables may help to early identify ASS and initiate management of the underlying condition
    corecore